← Back to home
Publications
Peer-Reviewed Publications
-
Carlon, A. G.*, Espath, L. and Tempone, R. (2024).
Approximating Hessian matrices using Bayesian inference: a new approach for quasi-Newton methods in stochastic optimization.
Optimization Methods and Software, 39(6), 1352–1382.
DOI:10.1080/10556788.2024.2339226
-
Carlon, A. G., Maia, C. D. d. C. D., Lopez, R. H.*, Torii, A. J., and Miguel, L. F. F. (2023).
A polynomial chaos efficient global optimization approach for Bayesian optimal experimental design.
Probabilistic Engineering Mechanics, 72, 103454.
DOI:10.1016/j.probengmech.2023.103454
-
Carlon, A. G.*, Kroetz, H. M., Torii, A. J., Lopez, R. H., and Miguel, L. F. F. (2022).
Risk optimization using the Chernoff bound and stochastic gradient descent.
Reliability Engineering & System Safety, 223, 108512.
DOI:10.1016/j.ress.2022.108512
-
Carlon, A. G.*, Torii, A. J., Lopez, R. H., and de Cursi, J. E. S. (2021).
Stochastic gradient descent for risk optimization.
In Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling: Uncertainties 2020, pages 424–435. Springer International Publishing.
DOI:10.1007/978-3-030-53669-5_31
-
Carlon, A. G.*, Dia, B. M., Espath, L., Lopez, R. H., and Tempone, R. (2020).
Nesterov-aided stochastic gradient methods using Laplace approximation for Bayesian design optimization.
Computer Methods in Applied Mechanics and Engineering, 363, 112909.
DOI:10.1016/j.cma.2020.112909
-
Carlon, A. G.*, Lopez, R. H., Espath, L., Miguel, L. F. F., and Beck, A. T. (2019).
A stochastic gradient approach for the reliability maximization of passively controlled structures.
Engineering Structures, 186, 1–12.
DOI:10.1016/j.engstruct.2019.01.121
-
Lopez, R.*, Cursi, J. S., and Carlon, A. G. (2018).
A state estimation approach based on stochastic expansions.
Computational and Applied Mathematics, 37, 3399–3430.
DOI:10.1007/s40314-017-0515-0
-
Carlon, A. G.*, Lopez, R. H., and Espath, L. (2017).
Stochastic optimization for design of experiments.
In Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering.
DOI:10.20906/cps/cilamce2017-0149
Submitted Publications
-
Bartuska, A.*, Carlon, A. G., Espath, L., Krumscheid, S., and Tempone, R. (2024).
Double-loop quasi-Monte Carlo estimator for nested integration.
Submitted to Computers and Mathematics with Applications.
-
Carlon, A. G., Espath, L.*, Lopez, R., and Tempone, R. (2024).
Multi-iteration stochastic optimizers.
Submitted to Computational Optimization and Applications.
Book Chapters and Conference Proceedings
-
de Cursi, E. S.*, Lopez, R. H., and Carlon, A. G. (2019).
A new approach for state estimation.
Chapter in Uncertainty Modeling for Engineering Applications, pages 41–54.
-
Lopez, R. H.*, de Cursi, E. S., and Carlon, A. G. (2015).
State estimation based on stochastic polynomials and variational approximation.
In Proceedings of the 3rd International Symposium on Uncertainty Quantification and Stochastic Modeling, pages 41–54.
Preprints
-
Bartuska, A.*, Carlon, A. G., Espath, L., Krumscheid, S. and Tempone, R. (2024).
Multilevel randomized quasi-Monte Carlo estimator for nested integration.
arXiv preprint atarXiv:2412.07723
* denotes corresponding author